Enhanced Fault Detection in Bearings Using Machine Learning and Raw Accelerometer Data: A Case Study Using the Case Western Reserve University Dataset
Author:
Affiliation:
1. School of Information Technology, Engineering, Mathematics and Physics, The University of the South Pacific, Private Mail Bag Laucala Campus, Suva, Fiji
2. Department of Industrial Engineering, University of Padova, 35121 Padova, Italy
Abstract
Publisher
MDPI AG
Link
https://www.mdpi.com/2078-2489/15/5/259/pdf
Reference25 articles.
1. Bearing fault detection in a 3 phase induction motor using stator current frequency spectral subtraction with various wavelet decomposition techniques;Kompella;Ain Shams Eng. J.,2018
2. Residual stress formation and stability in bearing steels due to fatigue induced retained austenite transformation;Morris;Int. J. Fatigue,2020
3. Fault diagnosis in industrial rotating equipment based on permutation entropy, signal processing and multi-output neuro-fuzzy classifier;Rajabi;Expert. Syst. Appl.,2022
4. A novel based-performance degradation indicator RUL prediction model and its application in rolling bearing;Yang;ISA Trans.,2022
5. An adaptive prediction approach for rolling bearing remaining useful life based on multistage model with three-source variability;Liu;Reliab. Eng. Syst. Saf.,2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3