Improving the Classification of Unexposed Potsherd Cavities by Means of Preprocessing

Author:

Wihandika Randy Cahya1ORCID,Lee Yoonji2ORCID,Data Mahendra3ORCID,Aritsugi Masayoshi4ORCID,Obata Hiroki5,Mendonça Israel4ORCID

Affiliation:

1. Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-0862, Japan

2. Graduate School of Social and Cultural Sciences, Kumamoto University, Kumamoto 860-0862, Japan

3. Faculty of Computer Science, Brawijaya University, Malang 65145, Indonesia

4. Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-0862, Japan

5. Faculty of Humanities and Social Sciences, Kumamoto University, Kumamoto 860-0862, Japan

Abstract

The preparation of raw images for subsequent analysis, known as image preprocessing, is a crucial step that can boost the performance of an image classification model. Although deep learning has succeeded in image classification without handcrafted features, certain studies underscore the continued significance of image preprocessing for enhanced performance during the training process. Nonetheless, this task is often demanding and requires high-quality images to effectively train a classification model. The quality of training images, along with other factors, impacts the classification model’s performance and insufficient image quality can lead to suboptimal classification performance. On the other hand, achieving high-quality training images requires effective image preprocessing techniques. In this study, we perform exploratory experiments aimed at improving a classification model of unexposed potsherd cavities images via image preprocessing pipelines. These pipelines are evaluated on two distinct image sets: a laboratory-made, experimental image set that contains archaeological images with controlled lighting and background conditions, and a Jōmon–Yayoi image set that contains images of real-world potteries from the Jōmon period through the Yayoi period with varying conditions. The best accuracy performances obtained on the experimental images and the more challenging Jōmon–Yayoi images are 90.48% and 78.13%, respectively. The comprehensive analysis and experimentation conducted in this study demonstrate a noteworthy enhancement in performance metrics compared to the established baseline benchmark.

Funder

Japan Society for the Promotion of Science KAKENHI Grant-in-Aid for Transformative Research Areas

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3