Abstract
The influence of pore fluid pressure on the normal deformation behaviors of joints is vital for understanding the interaction between hydraulic and mechanical processes of joints. The effect of pore fluid pressure on the normal deformation of a granite matched joint was investigated by laboratory experiments. Experimental results indicate pore fluid pressure significantly affects the normal deformation of jointed sample, and the relative normal deformation of jointed sample during fluid injection consists of the opening of the joint and the dilation of host rock. The action of pore fluid pressure on the joint follows the Terzaghi’s effective stress law. The normal deformation of the joint can be well quantitated by the generalized exponential model. The relative normal deformation of host rock during fluid injection would have a linear relationship with pore fluid pressure, and if affected by gas is more pronounced than water.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献