Abiotic Depletion of Boron: An Update Characterization Factors for CML 2002 and ReCiPe

Author:

Çolak Ayşenur,Laratte BertrandORCID,Elevli Birol,Çoruh Semra

Abstract

The risk of resource depletion for future generations of humanity is often cited as an important issue. The choice of impact categories and characterization models for resource extraction in LCA is no more precise than other impact categories and models. This means that more discussion is needed on the use of resources. In this article, the potential depletion of Boron and Boron minerals (Colemanite, Ulexite, Tincal) are studied. These minerals have a big role for the world and for Turkey; however, this resource is limited. Using the life cycle assessment methodology, one can estimate the resource depletion through the indicator “abiotic resource depletion”. Several models can evaluate this indicator, but the most used models are ReCiPe and CML (that is the previous attempt of ReCiPe) methods. Here, we estimated the damage that is done to natural resource scarcity. The values that are calculated by these two methods were compared to identify the potential evolution of the model and to observe the gap between these two models. The ReCiPe method refers to the average amount of extra ore that is produced in the future to extract 1 kg of boron ore or boron minerals resource. On the other hand, The CML method depends on the final reserve amount in terms of depletion. The results show no depletion shortly for boron ore and boron minerals. Correlation coefficients were calculated in the ReCiPe method, and ‘high uncertainty’ was estimated since R2 < 0.8. This research highlights the fact that there is the necessity to propose different impact factors for the various minerals and not only for boron (that is done today).

Funder

Scientific and Technological Research Council of Turkey

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3