Chemical Diversity of Teeth and Bone Fragments from a Newly Discovered Upper Muschelkalk Bone Bed from Silesia, Poland

Author:

Krzykawski TomaszORCID,Szopa KrzysztofORCID,Niedźwiedzki Robert,Setkiewicz Krzysztof,Czaja MariaORCID

Abstract

The new exposure of the Upper Muschelkalk clays and dolomites located south of Kalety (Tarnogórski District, Silesia, Poland) provided numerous remains of vertebrates represented by teeth, scales, long bones, and coprolites. Despite the influence of hydrothermal processes leading to dolomitization and Zn-Pb deposit formation, the preservation of fossil remains is good. The taxonomic diversity and accumulation of vertebrate debris in the dolomite are similar to other “bone beds” from the Muschelkalk and the Lower Keuper units. The SEM-EDS, EMP-WDS, and XRD analyses confirm that the examined remains consist of hydroxylapatite containing carbonate ions. Most vertebrate teeth as well as some bone fragments show zoning in the BSE imaging. In tooth cross-sections, three or two zones are preserved: (I) the outermost zone, associated with diagenetic mineralization of enameloid apatite, (II) a intermediate zone (orthodentine), and (III) the most porous internal zone (osteodentine). Decreasing P, Ca, Sr in the composition of the apatite which forms successive zones, is visible from the most external to the central part. Selective diagenetic substitution and adsorption of some elements by apatite crystals can allow recognition of the genetic origin of highly damaged or transported fragments scattered in the sedimentary layers. The chemical behavior of bioapatite, from deposition to digenesis, shows its useful role for identification of the formation process and potential, younger changes (e.g., hydrothermal overprint). The X-ray diffraction data, particularly cell parameters “a” and “c”, can determine the degree of crystallinity and/or diagenesis. Moreover, correlation between some elements/ions (e.g., Sr, Ba, Ca, Mg, F, OH) can be helpful for the identification of the fossil type, especially if the bones are small and incomplete.

Funder

University of Silesia

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3