The Distribution of Gas Components within a Shale System and Its Implication for Migration

Author:

Fan Bojiang,Shi Liang,Wang Xia,Wang Chi,Li Yating,Huang Feifei

Abstract

Experimental studies on the desorption and adsorption of shale are conducted extensively and used for in-depth research on shale gas components and isotopic components. However, there is little systematic research aimed at a given shale stratum. This study takes the Chang-7 shale of the YC23 Well in the Ordos Basin as the research object, and attempts to obtain a full understanding of the distribution characteristics of different gas components, and to explore the migration ability of different gas components. In this study, Chang-7 shale gas in Well YC23 can be sorted into three categories: generated gas, retained gas and accumulated gas. Geochemical parameters including TOC, S1 and S2 are used to evaluate the generated gas, and the fractionation of hydrocarbon components is used to distinguish retained gas and migrated gas. The fractionation of non-hydrocarbon components as well as carbon isotopes is also analyzed and discussed. This study confirms that shale gas in different locations has unique gas components due to gas migration.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference39 articles.

1. Determination of desorbable gas concentration of coal (direct method)

2. Gas Sorption on Coal and Measurement of Gas Content;Yee,1993

3. The origin of marine shale gas in the northeastern Sichuan Basin, China: Implications from chemical composition and stable carbon isotope of desorbed gas;Han;Shiyou Xuebao/Acta Pet. Sin.,2013

4. Gas Desorption of Low-Maturity Lacustrine Shales, Trassic Yanchang Formation, Ordos Basin, China

5. Characteristics and origin of desorption gas of the Permian Shanxi Formation shale in the Ordos Basin, China

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3