Comparative Toxicity Assessment of Eco-Friendly Synthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) in Plants and Aquatic Model Organisms

Author:

Hoffmann Nicolás,Tortella GonzaloORCID,Hermosilla EdwardORCID,Fincheira Paola,Diez M. CristinaORCID,Lourenço Isabella M.ORCID,Seabra Amedea B.ORCID,Rubilar Olga

Abstract

This study aimed to evaluate the toxicity of superparamagnetic iron oxide nanoparticles (SPIONs) synthesized by biogenic (BS) and chemical (CH) routes. The nanoparticles were characterized by X-ray diffraction (XRD), X-ray spectroscopy (XPS), atomic force microscopy (AFM), vibrating-sample magnetometry (VSM-SQUID), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The toxicity of SPIONs was evaluated using Artemia salina as model aquatic organisms and Raphanus sativus and Lactuca sativa as model plants to evaluate their phytotoxicity. The results obtained from XRD, XPS, and AFM confirmed the formation of spherical nanoparticles of 41.9 ± 1.00 nm (BS route) and 19.8 ± 0.47 nm (CH route). VSM-SQUID demonstrated the superparamagnetic behavior of both nanoparticles, and FT-IR provided evidence of the differences in the surface of SPIONs, suggesting the presence of phenolic compounds on the surface of BS-SPIONs. For the assays with Artemia salina, the results demonstrated (i) nonsignificant differences of BS-SPIONs in mortality rates, and (ii) significant toxicity (p < 0.05) was observed for CH-SPIONs at 300 and 400 mg L−1. The Raphanus sativa plant assay tests showed (i) BS-SPIONs and CH-SPIONs improved the root elongation of seedlings. However, BS-SPIONs demonstrated significant activity on root seedling elongation (p < 0.05) in the range of 300 mg L−1 to 600 mg L−1. To the best of our knowledge, this is the first report to compare the toxicity of chemically and biogenically synthesized SPIONs. In conclusion, although BS-SPIONs and CH-SPIONs present similar structures, their characteristics of magnetic saturation and surface structure are nonidentical, providing differences in their biological activity.

Funder

Agencia Nacional de Investigación y Desarrollo

São Paulo Research Foundation

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3