Forest Road Wearing Course Damage Assessment Possibilities with Different Types of Laser Scanning Methods including New iPhone LiDAR Scanning Apps

Author:

Mikita TomášORCID,Krausková DominikaORCID,Hrůza Petr,Cibulka MilošORCID,Patočka ZdeněkORCID

Abstract

Forests make up 34.1% of the Czech Republic total area and forest roads account for nearly the same length (47,465 km) as all other roads administered by the state and its regions (55,738 km). Forest roads are not as intensively used as other roads. On the other hand, as logging trucks carry the maximum permitted load on roads and forests create a specific microclimate, forest roads are subject to rapid wear. A road wearing course is generally designed for 20 years of service and for a maximum damage level of 25% before they are supposed to be reconstructed. To ensure this life cycle is adhered to, more efficient, faster, and more flexible surface damage detection adaptable for forest environment is needed. As smartphones and their optical devices, i.e., new iPhones with LiDAR sensors, become more advanced, the option arises to perform laser scanning on road surfaces using smartphones applications. This work aimed to test this technology and its precision applicability to assessing damage to a forest wearing course and compare it with another hand-held personal laser scanner (PLShh), represented in this study by GeoSLAM ZEB Horizon scanner, and more precise terrestrial laser scanning (TLS) technology, represented in this study by Faro Focus 3D laser scanner, which have started to replace tacheometric wearing course damage surveying thanks to their greater precision. So, this study involved a comparison of three alternative laser scanning methods focused especially on these, which are implemented in new iPhones for tacheometric surveying. First, a Faro Focus 3D laser scanner was used for the TLS method. Second, the PLShh method was tested on a GeoSLAM ZEB Horizon scanner. Third, another PLShh method using an iPhone 13 Pro with applications 3D Scanner and Polycam was evaluated. If we are comparing positional height accuracy of PLShh to tacheometric surveying on reference cross position height coordinates, ZEB Horizon achieved devXY and devZ RMSE 0.108 m; 0.025 m; iPhone 13 Pro with 3D Scanner app devXY and devZ RMSE 0.185 m; 0.021 m, and with Polycam app devXY and devZ RMSE 0.31 m; 0.045. TLS achieved the best results with devXY RMSE 0.049 and devZ RMSE 0.0077. The results confirm that only the TLS scanner achieves precision values in height differences applicable for an assessment of forest road wearing course damage measurement comparable with tacheometric surveying. Surprisingly, comparing the PLShh scanners to the TLS technology, they achieved interesting results, comparing their transverse profiles and 3D objects as digital surface models (DSM) of the road to TLS in height position. In transverse profiles, ZEB Horizon achieved devZ RMSE 0.032 m; iPhone 13 Pro with 3D Scanner app devZ RMSE 0.017 m, and with Polycam app devZ RMSE 0.041 m compared to the TLS method measured using a Faro Focus 3D static laser scanner. Comparing forest road DSM to Faro Focus 3D, ZEB Horizon achieved devZ RMSE 0.028 m; iPhone 13 Pro with 3D Scanner app devZ RMSE 0.018 m and with Polycam devZ RMSE 0.041 m. These results in height differences show that the height accuracy of PLShh achieves precision, which is applicable to determining the current shape of forest road wearing course compared to the required roof shape gradient. However, further testing provided the insight that such a kind of PLShh measurement is still only possible to use for the identification of a transverse profile shape, as in length measurement the length error increases. All PLShh are able to capture the current shape of forest road cross profile, but still they cannot be used for any design or calculation of material measurement needed for wearing course repair.

Funder

the Internal Grant Agency of the Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic

Publisher

MDPI AG

Subject

Forestry

Reference35 articles.

1. Toscani, P., Sekot, W., and Holzleitner, F. Forest Roads from the Perspective of Managerial Accounting—Empirical Evidence from Austria. Forests, 2020. 11.

2. Act No. 13/1997 Coll; on Forests and on Amendments to Certain Acts (Road Act);. Road Act and Amendments to Certain Acts (Road Act), 1997.

3. Act No. 289/1995 Coll; on Forests and on Amendments to Certain Acts (Forest Act);. Forest Act and Amendments to Certain Acts (Forest Act), 1995.

4. Challenges in Forest Road Maintenance in North America;Dodson;Croat. J. For. Eng.,2021

5. Short term monitoring of forest road pavement degradation using terrestrial laser scanning;Akgul;Measurement,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3