Improving the Performance of Opportunistic Networks in Real-World Applications Using Machine Learning Techniques

Author:

Rashidibajgan Samaneh,Hupperich ThomasORCID

Abstract

In Opportunistic Networks, portable devices such as smartphones, tablets, and wearables carried by individuals, can communicate and save-carry-forward their messages. The message transmission is often in the short range supported by communication protocols, such as Bluetooth, Bluetooth Low Energy, and Zigbee. These devices carried by individuals along with a city’s taxis and buses represent network nodes. The mobility, buffer size, message interval, number of nodes, and number of messages copied in such a network influence the network’s performance. Extending these factors can improve the delivery of the messages and, consequently, network performance; however, due to the limited network resources, it increases the cost and appends the network overhead. The network delivers the maximized performance when supported by the optimal factors. In this paper, we measured, predicted, and analyzed the impact of these factors on network performance using the Opportunistic Network Environment simulator and machine learning techniques. We calculated the optimal factors depending on the network features. We have used three datasets, each with features and characteristics reflecting different network structures. We collected the real-time GPS coordinates of 500 taxis in San Francisco, 320 taxis in Rome, and 196 public transportation buses in Münster, Germany, within 48 h. We also compared the network performance without selfish nodes and with 5%, 10%, 20%, and 50% selfish nodes. We suggested the optimized configuration under real-world conditions when resources are limited. In addition, we compared the performance of Epidemic, Prophet, and PPHB++ routing algorithms fed with the optimized factors. The results show how to consider the best settings for the network according to the needs and how self-sustaining nodes will affect network performance.

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced QoS Optimization of Opportunistic Networks using Decision Tree;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

2. A comprehensive survey on Machine Learning techniques in opportunistic networks: Advances, challenges and future directions;Pervasive and Mobile Computing;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3