A Systematic Review of Radio Frequency Threats in IoMT

Author:

Jayaraj Irrai Anbu,Shanmugam BharanidharanORCID,Azam SamiORCID,Samy Ganthan Narayana

Abstract

In evolving technology, attacks on medical devices are optimized due to the driving force of AI, computer vision, mixed reality, and the internet of things (IoT). Optimizing cybersecurity on the internet of medical things (IoMT) and building cyber resiliency against crime-as-a-service (CaaS) in the healthcare ecosystem are challenging due to various attacks, including spectrum-level threats at the physical layer. Therefore, we conducted a systematic literature review to identify the research gaps and propose potential solutions to spectrum threats on IoMT devices. The purpose of this study is to provide an overview of the literature on wireless spectrum attacks. The papers we reviewed covered cyber impacts, layered attacks, attacks on protocols, sniffing attacks, field experimentation with cybersecurity testbeds, radiofrequency machine learning, and data collection. In the final section, we discuss future directions, including the sniffing attack mitigation framework in IoMT devices operating under a machine implantable communication system (MICS). To analyze the research papers about physical attacks against IoT in health care, we followed the Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines. Scopus, PubMed, and Web of Science were searched for peer-reviewed articles, and we conducted a thorough search using these resources. The search on Scopus containing the terms “jamming attack” and “health” yielded 330 rows, and the investigation on WoS yielded 17 rows. The search terms “replay attack” and “health” yielded 372 rows in Scopus, while PubMed yielded 23 rows, and WoS yielded 50 articles. The search terms “side-channel attack” and “health” yielded 447 rows in Scopus, WoS yielded 30 articles, and the search terms “sniffing attack” and “health” yielded 18 rows in Scopus, while PubMed yielded 1 row, and WoS yielded 0 articles. The terms “spoofing attack” and “health” yielded 316 rows in Scopus, while PubMed yielded 5 rows, and WoS yielded 23 articles. Finally, the search terms “tampering attack” and “health” yielded 25 rows in Scopus, PubMed yielded 14 rows, and WoS yielded 46 rows. The search time frame was from 2003 to June 2022. The findings show a research gap in sniffing, tampering, and replay attacks on the IoMT. We have listed the items that were included and excluded and provided a detailed summary of SLR. A thorough analysis of potential gaps has been identified, and the results are visualized for ease of understanding.

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3