Predicting the Variables That Determine University (Re-)Entrance as a Career Development Using Support Vector Machines with Recursive Feature Elimination: The Case of South Korea

Author:

Park Taejung,Kim ChayoungORCID

Abstract

The current study seeks to identify variables that affect the career decision-making of high school graduates with respect to the choice of university (re-)entrance in South Korea where education has great importance as a tool for self-cultivation and social prestige. For pattern recognition, we adopted a support vector machine with recursive feature elimination (SVM-RFE) with a big-data of survey of Korean college candidates. Based on the SVM-RFE analysis results, new enrollers were mostly affected by the mesosystems of interactions with parents, while re-enrollers were affected by the macrosystems of social awareness as well as individual estimates of talent and aptitude of individual systems. By predicting the variables that affect the high school graduates’ preparation for university re-entrance, some survey questions provide information on why they make the university choice based on interactions with their parents or acquaintances. Along with these empirical results, implications for future research are also presented.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3