An Energy Efficient Routing Approach for Cloud-Assisted Green Industrial IoT Networks

Author:

Bhandari Khadak SinghORCID,Cho GI HwanORCID

Abstract

The green industrial Internet of things (IIoT) is emerging as a new paradigm, which envisions the concept of connecting different devices and reducing energy consumption. In multi-hop low power and lossy network, a resource-constrained node should aware of its energy consumption while routing the data packets. As part of IoT, the routing protocol for low power and lossy network (RPL) is considered to be a default routing standard. Recently, RPL has gained a significant maturity, but still, energy optimization is one of the main issues, because the default objective function (OF), which makes routing decision mainly based on a single parameter, such as link quality, and ignores the energy cost. Therefore, this paper aims to consider the concept of green IIoT concerning how a routing approach can achieve energy efficiency in resource-constrained IoT networks. For this, we propose a resource aware and reliable OF (RAROF), which constructs an optimum routing path by exploiting the information regarding the duty cycle, link quality, energy condition, and resource availability of a node. In addition, we propose node vulnerability index (NVI), a new routing metric that identifies the vulnerable nodes in terms of energy. To deal with the diverse data traffic of the IIoT network, we implement a multi-queuing based traffic differentiation approach that ensures the application requirements. The extensive simulation results show that the proposed RAROF can effectively extend the lifetime of the network, enhance the energy efficiency, and achieve higher reliability than that of other OFs. In this way, RAROF makes a routing decision with the purpose of extending network lifetime and minimizing energy depletion, paving the way towards green IIoT.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimized Secure Clustering and Energy Efficient System for IIoT Data in Cloud Environment;EAI Endorsed Transactions on Energy Web;2024-08-01

2. RPL Routing Metrics for 5G Networks: Systematic Review in IIoT;2023 IEEE Colombian Caribbean Conference (C3);2023-11-22

3. Holistic survey on energy aware routing techniques for IoT applications;Journal of Network and Computer Applications;2023-04

4. Machine Learning for VRUs accidents prediction using V2X data;Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing;2023-03-27

5. Towards the support of Industrial IoT applications with TSCH;Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing;2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3