Development of Sustainable Heterogeneous Catalysts for the Photocatalytic Treatment of Effluents

Author:

Sales Herbet B.ORCID,Menezes Romualdo R.ORCID,Neves Gelmires A.ORCID,Souza João J. N. de,Ferreira Jailson M.,Chantelle LaísORCID,Menezes de Oliveira André L.ORCID,Lira Hélio de L.ORCID

Abstract

The inadequate discharge of effluents from different sources without prior treatment can impact the characteristics of soil and water, which reflect serious environmental problems. Advanced oxidative processes (AOP) appear as a viable alternative for environmental remediation, including wastewater treatment. Herein, α-MoO3 and α-Fe2O3 semiconductors were synthesized at low temperature by a Pechini-based method and then applied in photocatalysis. The catalytic efficiency was performed under visible light toward the degradation of an organic persistent pollutant (Rhodamine B dye, RhB), commonly present in industries wastewater. The results indicated that the synthesized α-MoO3 or α-Fe2O3 photocatalysts presented a pronounced activity and promoted an efficient RhB degradation after 15 min of reaction. α-MoO3 had a degradation efficiency of 93% and 98%, while α-Fe2O3 showed 67% and 100% RhB degradation without and with the addition of H2O2, respectively. These results suggest that the synthesized oxides have high oxi-reductive capacity, which can be used for a fast and effective photodegradation of RhB and other organic persistent pollutants to minimize environmental impacts.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3