Time Series Forecasting of Univariate Agrometeorological Data: A Comparative Performance Evaluation via One-Step and Multi-Step Ahead Forecasting Strategies

Author:

Suradhaniwar Saurabh,Kar Soumyashree,Durbha Surya S.,Jagarlapudi Adinarayana

Abstract

High-frequency monitoring of agrometeorological parameters is quintessential in the domain of Precision Agriculture (PA), where timeliness of collected observations and the ability to generate ahead-of-time predictions can substantially impact the crop yield. In this context, state-of-the-art internet-of-things (IoT)-based sensing platforms are often employed to generate, pre-process and assimilate real-time data from heterogeneous sensors and streaming data sources. Simultaneously, Time-Series Forecasting Algorithms (TSFAs) are responsible for generating reliable forecasts with a pre-defined forecast horizon and confidence. These TSFAs often rely on modelling the correlation between endogenous variables, the impact of exogenous variables on latent form and structural properties of data such as autocorrelation, periodicity, trend, pattern, and causality to approximate the model parameters. Traditionally, TSFAs such as the Holt–Winters (HW) and Autoregressive family of models (ARIMA) apply a linear and parametric approach towards model approximation, whilst models like Support Vector Regression (SVRs) and Neural Networks (NNs) adhere to a non-linear, non-parametric approach for modelling the historical data. Recently, Deep-Learning-based TSFAs such as Recurrent Neural Networks (RNNs), and Long-Short-Term-Memory (LSTMS) have gained popularity due to their capability to model long sequences of highly non-linear and stochastic data effectively. However, the evolution of TSFAs for predicting agrometeorological parameters pivots around one-step-ahead forecasting, which often overestimates the performance metrics defined for validating forecast capabilities of potential TSFAs. Hence, this paper attempts to evaluate and compare the performance of different machine learning (ML) and deep learning (DL) based TSFAs under one-step and multi-step-ahead forecast scenarios, thereby estimating the generalization capabilities of TSFA models over unseen data. The data used in this study are collected from an Automatic Weather Station (AWS), sampled at an interval of 15 min, and range over one month. Temperature (T) and Humidity (H) observations from the AWS are further converted into univariate, supervised time-series diurnal data profiles. Finally, walk-forward validation is used to evaluate recursive one-step-ahead forecasts until the desired prediction horizon is achieved. The results show that the Seasonal Auto-Regressive Integrated Moving Average (SARIMA) and SVR models outperform their DL-based counterparts in one-step and multi-step ahead settings with a fixed forecast horizon. This work aims to present a baseline comparison between different TSFAs to assist the process of model selection and facilitate rapid ahead-of-time forecasting for end-user applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3