Compressive Behaviour of Coconut Fibre (Cocos nucifera) Reinforced Concrete at Elevated Temperatures

Author:

Bamigboye GideonORCID,Ngene Ben,Aladesuru Omotolani,Mark Oluwaseun,Adegoke Dunmininu,Jolayemi Kayode

Abstract

Fire outbreaks in buildings have been a major concern in the world today. The integrity of concrete is usually questioned due to the fact that after these fire outbreaks the strength of the concrete is reduced considerably. Various methods have been adopted to improve the fire resistance property of concrete. This study focused on the use of coconut fibre to achieve this feat. In this study, varying percentages of treated and untreated coconut fibres were incorporated into concrete and the compressive strength was tested for both before heating and after heating. The percentages of replacement were 0.25, 0.5, 0.75 and 1% fibre content by weight of cement. Concrete cubes that had 0% fibre served as control specimens. After subjecting these concrete cubes to 250 °C and 150 °C for a period of 2 h, the compressive strength increased when compared to the control. The compressive strength increased up to 0.5% replacement by 3.88%. Beyond 0.5% fibre, the compressive strength reduced. Concrete having coconut fibre that had been treated with water also exhibited the highest compressive strength of 28.71 N/mm². It is concluded that coconut fibres are a great material in improving the strength of concrete, even after it was exposed to a certain degree of elevated temperature.

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

Reference35 articles.

1. Investigation of Salinity Effect on Compressive Strength of Reinforced Concrete

2. Effect of high temperatures on high performance steel fibre reinforced concrete

3. Effect of elevated on compressive strength and flexural strength of fibre reinforced concrete;Shrinkar;Int. J. Concr. Technol.,2017

4. Effect of steel fibers on the compressive and flexural strength of concrete;Ashfaque;Int. J. Adv. Appl. Sci.,2018

5. Experimental investigation of the physical and mechanical properties of Sisal fiber-reinforced concrete;Abass;Fibers,2018

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3