Secure Authentication and Credential Establishment in Narrowband IoT and 5G

Author:

Sanchez-Gomez JesusORCID,Garcia-Carrillo DanORCID,Marin-Perez RafaelORCID,Skarmeta AntonioORCID

Abstract

Security is critical in the deployment and maintenance of novel IoT and 5G networks. The process of bootstrapping is required to establish a secure data exchange between IoT devices and data-driven platforms. It entails, among other steps, authentication, authorization, and credential management. Nevertheless, there are few efforts dedicated to providing service access authentication in the area of constrained IoT devices connected to recent wireless networks such as narrowband IoT (NB-IoT) and 5G. Therefore, this paper presents the adaptation of bootstrapping protocols to be compliant with the 3GPP specifications in order to enable the 5G feature of secondary authentication for constrained IoT devices. To allow the secondary authentication and key establishment in NB-IoT and 4G/5G environments, we have adapted two Extensible Authentication Protocol (EAP) lower layers, i.e., PANATIKI and LO-CoAP-EAP. In fact, this approach presents the evaluation of both aforementioned EAP lower layers, showing the contrast between a current EAP lower layer standard, i.e., PANA, and one specifically designed with the constraints of IoT, thus providing high flexibility and scalability in the bootstrapping process in 5G networks. The proposed solution is evaluated to prove its efficiency and feasibility, being one of the first efforts to support secure service authentication and key establishment for constrained IoT devices in 5G environments.

Funder

FEDER

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference51 articles.

1. Internet of Things (IoT): A vision, architectural elements, and future directions

2. IMPULS-industrie 4.0-readinesshttps://industrie40.vdma.org/documents/4214230/26342484/Industrie_40_Readiness_Study_1529498007918.pdf/0b5fd521-9ee2-2de0-f377-93bdd01ed1c8

3. LoRaWAN specification;Sornin;LoRa Alliance,2015

4. M2M and IoT Redefined Through Cost Effective and Energy Optimized Connectivityhttps://lafibre.info/images/3g/201302_sigfox_whitepaper.pdf

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3