Abstract
In recent years, process mining has been attracting attention as an effective method for improving business operations by analyzing event logs that record what is done in business processes. The event log may contain missing data due to technical or human error, and if the data are missing, the analysis results will be inadequate. Traditional methods mainly use prediction completion when there are missing values, but accurate completion is not always possible. In this paper, we propose a method for understanding the tendency of missing values in the event log using decision tree learning without supplementing the missing values. We conducted experiments using data from the incident management system and confirmed the effectiveness of our method.
Subject
Information Systems and Management,Computer Science Applications,Information Systems
Reference48 articles.
1. Process Mining
2. Efficient recovery of missing events
3. Process mining in healthcare: Data challenges when answering frequently posed questions;Mans,2012
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献