Piezoresistive Theory and Numerical Calculation for Carbon Nanotube Polymer Composite

Author:

Huang Zhengwei12,Song Ying12,Zhao Xiaohua12,Hou Huiming12

Affiliation:

1. Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China

2. Key Laboratory of Structure and Wind Tunnel of Guangdong Higher Education Institutes, Shantou 515063, China

Abstract

A three-dimensional theory has been established for the piezoresistivity of carbon nanotube (CNT) polymer composites. Based on the Mori–Tanaka method in meso-mechanics theory and considering quantum tunneling effect between CNTs, an approach to calculate equivalent electrical conductivity of composites was proposed. On this basis, a piezoresistive theory, which incorporates the effect of composites’ geometric nonlinearity, was developed for CNT polymer composites. The theory is dependent only on some basic physical parameters of the materials. A finite element formula of the theory for the numerical calculation of piezoresistivity was presented from the analysis of both elastic and electric fields. Numerical simulations demonstrated that the results predicted by the theory were in good agreement with those of the experimental tests. Parameter sensitivity analysis revealed that when both the potential barrier height of the matrix and the initial average separation distance between CNTs increased, the piezoresistivity obviously increased. However, with the increase in aspect ratio and CNT conductivity, the piezoresistivity decreased gradually. A practical engineering application of this theory is also provided.

Funder

Natural Science Foundation of Guangdong Province

Scientific Research Foundation of Shantou University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3