A Study on Processing Defects and Parameter Optimization in Abrasive Suspension Jet Cutting of Carbon-Fiber-Reinforced Plastics

Author:

Li Liucan1,Xiao Nanzhe1,Guo Chuwen1,Wang Fengchao1

Affiliation:

1. School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Abrasive suspension jet (ASJ), an accurate cold-cutting technology, can address traditional processing issues relating to carbon-fiber-reinforced plastics (CFRPs) like tool wear, interlayer delamination, large heat-affected zone, and low surface roughness. This study employed the use of an ASJ to cut CFRPs and an ultra-depth optical microscope to scan the cut surface to analyze interlayer delamination, surface roughness, kerf taper, and shoulder damage. Regression analysis was conducted to establish a prediction model for cutting quality based on surface roughness, kerf taper, and shoulder damage. Various types of CFRP cutting quality were analyzed using jet parameters. It was found that the use of ASJ to process CFRP results in the following defects: The range of surface roughness variation is from 0.112 μm to 0.144 μm. Surface roughness is most influenced by stand-off distance, followed by traverse speed and jet pressure. The range of kerf taper variation is from 4.737° to 10.1°. Kerf taper is most influenced by stand-off distance, followed by jet pressure and traverse speed. The range of shoulder damage variation is from 3.384 μm2 to 10 μm2. Shoulder damage is most influenced by jet pressure, followed by traverse speed and stand-off distance. A prediction model for cutting quality was developed based on surface roughness, kerf taper, and shoulder damage, providing data support for ASJ cutting of CFRPs. The optimal parameter combination is a stand-off distance of 1 mm, a jet pressure of 30 MPa, and a traverse speed of 30 mm/min.

Funder

Future Scientists Program of the China University of Mining and Technology

Postgraduate Research and Practice Innovation Program of Jiangsu Province

National Natural Science Foundation of China

Key projects of the Joint Fund of the National Natural Science Foundation of China

Hebei Natural Science Foundation Ecological Wisdom Mine Joint Fund Project

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3