Synthesis of Porous Materials Using Magnesium Slag and Their Adsorption Performance for Lead Ions in Aqueous Solution

Author:

Lu Guangjun1,Han Jingang1,Chen Ying1,Xue Hongjiao1,Qiu Ruifang1,Zhou Xinxing1ORCID,Ma Zhibin1ORCID

Affiliation:

1. State Environmental Protection Key Laboratory of Efficient Utilization Technology of Coal Waste Resources, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China

Abstract

Magnesium slag-based porous materials (MSBPM) were successfully synthesized using alkali activation and foaming methods as an effective adsorbent for Pb2+ in solution. The effects of foaming agent type, foaming agent dosage, alkali dosage, and water glass modulus on the properties of the MSBPM were studied, and the micromorphology and porosity of the MSBPM were observed using microscopy. The influence of pH value, initial concentration, and adsorbent dosage on the Pb2+ adsorption was investigated. The results showed that a porous material (MSBPM-H2O2) with high compressive strength (8.46 MPa) and excellent Pb2+ adsorption capacity (396.11 mg·g−1) was obtained under the optimal conditions: a H2O2 dosage of 3%, an alkali dosage of 9%, a water glass modulus of 1.3, and a liquid–solid ratio of 0.5. Another porous material (MSBPM-Al) with a compressive strength of 5.27 MPa and the Pb2+ adsorption capacity of 424.89 mg·g−1 was obtained under the optimal conditions: an aluminum powder dosage of 1.5‰, an alkali dosage of 8%, a water glass modulus of 1.0, and a liquid–solid ratio of 0.5. When the pH of the aqueous solution is 6 and the initial Pb2+ concentrations are 200~500 mg·L−1, the MSBPM-H2O2 and MSBPM-Al can remove more than 99% of Pb2+ in the solution. The adsorption process of both materials followed the Langmuir isotherm model and pseudo-second-order kinetic model, indicating that the adsorption process was a single-molecule layer chemical adsorption.

Funder

Shanxi Province key research and development project

National Natural Science Foundation of China

Shanxi graduate education innovation project

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3