Optimizing Multi-Vehicle Demand-Responsive Bus Dispatching: A Real-Time Reservation-Based Approach

Author:

Zhou Xuemei12ORCID,Wei Guohui1,Zhang Yunbo1,Wang Qianlin1,Guo Huanwu1

Affiliation:

1. College of Transportation Engineering, Tongji University, Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Key Laboratory of Road and Traffic Engineering of the State Ministry of Education, 4800 Caoan Highway, Shanghai 201804, China

2. Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Dongnandaxue Road #2, Nanjing 211189, China

Abstract

The demand-responsive public transport system with multi-vehicles has the potential to efficiently meet real-time and high-volume transportation needs through effective scheduling. This paper focuses on studying the real-time vehicle scheduling problem, which involves dispatching and controlling different model vehicles uniformly based on generated vehicle number tasks at a given point in time. By considering the immediacy of real-time itinerary tasks, this paper optimizes the vehicle scheduling problem at a single time point. The objective function is to minimize the total operating cost of the system while satisfying constraints such as passenger capacity and vehicle transfer time. To achieve this, a vehicle scheduling optimization model is constructed, and a solution approach is proposed by integrating bipartite graph optimal matching theory and the Kuhn–Munkres algorithm. The effectiveness of the proposed approach is demonstrated by comparing it with a traditional greedy algorithm using the same calculation example. The results show that the optimization method has higher solution efficiency and can generate a scheduling scheme that effectively reduces operating costs, improves transportation efficiency, and optimizes the operation organization process for demand-responsive buses.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3