Affiliation:
1. State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2. Mountain Bridge and Materials Engineering Research Center of Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
Abstract
Orthotropic steel deck (OSD) structures are widely used in the bridge deck system of rail transit bridges. Reducing the amplitude of the stress intensity factor is the most effective method to improve the fatigue life of OSD structures. In order to explore the fatigue crack propagation of the OSD structure and the factors affecting the amplitude of the structural stress intensity factor, linear elastic fracture mechanics and Paris’ law is used for theoretical support in this paper. Firstly, a cable-stayed bridge of urban rail transit is taken as the research object, a full-scale segment model of the OSD structure is designed and static and fatigue tests are carried out. Based on the test data, the fatigue life of the structure is simulated and predicted. Finally, ABAQUS and Franc3D are used to analyze the influence of parameters, such as U-rib thickness, roof thickness and diaphragm thickness, of the OSD structure on the amplitude of the stress intensity factor. The test and FEM analysis results show that the thickness of diaphragm and the height of the U-rib have little effect on the fatigue life of the OSD structure, appropriately increasing the thickness of the top plate and U-rib has a positive significance for prolonging the fatigue life of the structure. In addition, it is also of reference value to the application of sustainability and the science of sustainable development.
Funder
Natural Science Foundation of PR China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献