About 3D Incompressible Flow Reconstruction from 2D Flow Field Measurements

Author:

Fabbiano Laura,Oresta PaoloORCID,Lay-Ekuakille AiméORCID,Vacca GaetanoORCID

Abstract

In this paper, an assessment of the uncertainty affecting a hybrid procedure (experimental/numerical) is carried out to validate it for industrial applications, at the least. The procedure in question serves to depict 3D incompressible flow fields by using 2D measurements of it and computing the third velocity component by means of the continuity equation. A quasi-3D test case of an incompressible flow has been inspected in the wake of a NACA 0012 airfoil immersed in a forced flow of water running in a rectangular open channel. Specifically, starting from a 2D measurement data in planes orthogonal to the stream-wise direction, the computational approach can predict the third flow velocity component. A 3D ADV instrument has been utilized to measure the flow field, but only two velocity components have been considered as measured quantities, while the third one has been considered as reference with which to compare the computed component from the continuity equation to check the accuracy and validity of the hybrid procedure. At this aim, the uncertainties of the quantities have been evaluated, according to the GUM, to assess the agreement between experiments and predictions, in addition to other metrics. This aspect of uncertainty is not a technical sophistication but a substantial way to bring to the use of a 1D and 2D measurement system in lieu of a 3D one, which is costly in terms of maintenance, calibration, and economic issues. Moreover, the magnitude of the most relevant flow indicators by means of experimental data and predictions have been estimated and compared, for further confirmation by means of a supervised learning classification. Further, the sensed data have been processed, by means of a machine learning algorithm, to express them in a 3D way along with accuracy and epoch metrics. Two additional metrics have been included in the effort to show paramount interest, which are a geostatistical estimator and Sobol sensitivity. The statements of this paper can be used to design and test several devices for industrial purposes more easily.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3