Decision Support System for Sustainable Exploitation of the Eocene Aquifer in the West Bank, Palestine

Author:

Jonoski AndrejaORCID,Ahmed Tanvir,Almasri Mohammad N.,Abu-Saadah Muath

Abstract

Groundwater is a crucial resource for water supply and irrigation in many parts of the world, especially in the Middle East. The Eocene aquifer, located in the northern part of the West Bank, Palestine, is threatened by unsustainable groundwater abstractions and on-ground pollution. Analysis and management of this aquifer are challenging because of limited data availability. This research contributes to the long-term sustainability of the aquifer by model-based design of future abstraction strategies considered within an uncertainty analysis framework. The methodology employed started with development of a single-layer steady-state MODFLOW groundwater model of the area, followed by uncertainty analysis of model parameters using Monte Carlo simulations. The same model was afterwards coupled with a Successive Linear Programming (SLP) optimization algorithm, implemented in the Groundwater Management tool (GWM) of the United States Geological Survey (USGS). The purpose of optimization was deriving five optimal abstraction strategies, each aiming to maximize groundwater abstraction, subject to different constraints regarding groundwater depletion. Given the uncertainty of model parameters, the sensitivity and reliability of these optimal strategies were then tested. Sensitivity was checked for two optimal strategies by performing re-optimization with different values of uncertain model parameters (one at a time). Reliability of the five strategies was tested by analyzing the extent of constraints’ violation for each strategy when varying the uncertain parameters using Monte Carlo simulations. Finally, the model was used for determining capture zones of wells for the five optimal abstraction strategies, land-use in these capture zones, and the associated estimates of on-ground nitrogen loading. The developed strategies were then deployed in a web-based decision support application (named Groundwater Decision Support System—GDSS), together with other relevant information. Users can analyze results of different optimal strategies in terms of groundwater level variations and total water balance results, and test consequences of uncertain parameters. Capture zones of wells for different abstraction strategies, together with land-use and on-ground nitrogen loading in these capture zones, are also presented. Results show that critical uncertain parameters are recharge, hydraulic conductivity, and conductance at key boundary condition locations. Optimal abstraction strategies results indicate that an increase in total abstractions could be between 5% and 20% from the current level (estimated at about 56 × 106 m3/year, which is about 74% of estimated annual recharge). The uncertain parameters, however, are impacting the sensitivity and the reliability of the optimal strategies to variable degrees. Recharge and hydraulic conductivity are the most critical uncertain parameters regarding sensitivity of the optimal strategies, while reliability is also impacted by the level of abstraction proposed in a given strategy (number, locations, and abstraction rates of new wells). The main novelty and contribution of this research is in combining modelling, uncertainty analysis, and optimization techniques in a comprehensive decision support system for the area of the Eocene aquifer, characterized with limited data availability.

Funder

Palestinian-Dutch Academic Cooperation Program on Water

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference49 articles.

1. Mahmoud, N., Zayed, O., and Petrusevski, B. (2022). Groundwater Quality of Drinking Water Wells in the West Bank, Palestine. Water, 14.

2. PWA (2014). Strategic Water Resources and Transmission Plan, Palestinian Water Authority. Available online: http://www.pwa.ps/page.aspx?id=sTpd7oa2511676167asTpd7o.

3. World Bank (2018). Securing Water for Development in West Bank and Gaza, World Bank. Available online: https://openknowledge.worldbank.org/handle/10986/30252?show=full.

4. UNEP (2020). State of Environment and Outlook Report for the Occupied Palestinian Territory 2020, United Nations Environment Programme. Available online: https://wedocs.unep.org/handle/20.500.11822/32268.

5. Rushton, K.R. (2003). Groundwater Hydrology: Conceptual and Computational Models, John Wiley and Sons Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3