Intelligent Fault Diagnosis Method Based on Cross-Device Secondary Transfer Learning of Efficient Gated Recurrent Unit Network

Author:

Mo Chaoquan1ORCID,Huang Ke1ORCID

Affiliation:

1. College of Mechanical & Electrical Engineering, Wenzhou University, Wenzhou 325035, China

Abstract

In response to the issues of low model recognition accuracy and weak generalization in mechanical equipment fault diagnosis due to scarce data, this paper proposes an innovative solution, a cross-device secondary transfer-learning method based on EGRUN (efficient gated recurrent unit network). This method utilizes continuous wavelet transform (CWT) to transform source domain data into images. The EGRUN model is initially trained, and shallow layer weights are frozen. Subsequently, random overlapping sampling is applied to the target domain data to enhance data and perform secondary transfer learning. The experimental results demonstrate that this method not only significantly improves the model’s ability to learn fault features but also enhances its classification accuracy and generalization performance. Compared to current state-of-the-art algorithms, the model proposed in this study shows faster convergence speed, higher diagnostic accuracy, and superior robustness and generalization, providing an effective approach to address the challenges arising from scarce data and varying operating conditions in practical engineering scenarios.

Funder

Zhejiang Provincial Science and Technology Project

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3