New High-Efficiency Resonant O-Type Devices as the Promising Sources of Microwave Power

Author:

Baikov Andrei,Baikova Olga

Abstract

New O-type high-power vacuum resonant microwave devices are considered in this study: COM klystrons, CSM klystrons and resotrodes. All these devices can output a large amount of power (up to units of MW and higher) with an efficiency of up to 90%. Such devices are promising microwave sources for industrial microwave technologies as well as for microwave energy. The principle of GSP-equivalence for klystrons is described herein, allowing a complete physical analog of this device with other parameters to be created. The existing mathematical and computer models of klystrons are analyzed. The processes of stage-by-stage optimization and the embedding procedure, which leads to COM and to CSM klystrons, are considered. Resotrodes, IOT-type devices with energy regeneration in the input circuit, are also considered. It is shown that these devices can combine high power with an efficiency of up to 90% and a gain of more than 30 dB. Resotrodes with 0-regeneration can be effective sources of radio frequency (RF) power in the range of 20 to 200 MHz. Resotrodes with 2π-regeneration are an effective source of RF/microwave energy in the range of 200 MHz to 1000 MHz.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference39 articles.

1. AMTec Microwaves https://www.4amtek.com/products/cooking-systems/

2. WaveLane http://grandtekco.com/

3. Simulation of conditions for the maximal efficiency of decimeter-wave klystrons

4. Toward High-Power Klystrons With RF Power Conversion Efficiency on the Order of 90%

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Possibility of Creation of the Multi Beam Broadband IOT;2022 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO);2022-06-29

2. The Comparison of Microwave Reflectance of Graphite and Reduced Graphene Oxide Used for Electronic Devices Protection;Energies;2022-01-17

3. On the Effective Modes of Electron Bunches Deceleration in the Gap of the Klystron Output Cavity;2021 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO;2021-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3