Abstract
A nonlinear sliding-mode controller for a three-phase converter, utilized in plug-in electric vehicles (PEVs), is proposed in this paper. The proposed controller enables the utilized converter to perform multiple functions during different operating modes of the vehicle, i.e., grid-to-vehicle (G2V) and vehicle-to-grid (V2G) modes. The bidirectional three-phase converter and the proposed controller operate as a power factor correction circuit, bridgeless boost converter, and rectifier during G2V mode (i.e., plug-in charging), and it operates as a conventional single-stage inverter during V2G mode. The stability analysis of the proposed controller is performed by defining a proper Lyapunov function. The functionality of the proposed nonlinear controller is first evaluated through simulation studies. The feasibility and effectiveness of the proposed control strategy is then validated using an industrial control card through a hardware-in-the-loop (HIL) experimental testbed.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献