Bioelectrosynthetic Conversion of CO2 Using Different Redox Mediators: Electron and Carbon Balances in a Bioelectrochemical System

Author:

Li Shuwei,Song Young EunORCID,Baek Jiyun,Im Hyeon Sung,Sakuntala Mutyala,Kim Minsoo,Park ChulhwanORCID,Min Booki,Kim Jung RaeORCID

Abstract

Microbial electrosynthesis (MES) systems can convert CO2 to acetate and other value-added chemicals using electricity as the reducing power. Several electrochemically active redox mediators can enhance interfacial electron transport between bacteria and the electrode in MES systems. In this study, different redox mediators, such as neutral red (NR), 2-hydroxy-1,4-naphthoquinone (HNQ), and hydroquinone (HQ), were compared to facilitate an MES-based CO2 reduction reaction on the cathode. The mediators, NR and HNQ, improved acetate production from CO2 (165 mM and 161 mM, respectively) compared to the control (without a mediator = 149 mM), whereas HQ showed lower acetate production (115 mM). On the other hand, when mediators were used, the electron and carbon recovery efficiency decreased because of the presence of bioelectrochemical reduction pathways other than acetate production. Cyclic voltammetry of an MES with such mediators revealed CO2 reduction to acetate on the cathode surface. These results suggest that the addition of mediators to MES can improve CO2 conversion to acetate with further optimization in an operating strategy of electrosynthesis processes.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference48 articles.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3