Analysis of the Impact of Building Integrated Photovoltaics (BIPV) on Reducing the Demand for Electricity and Heat in Buildings Located in Poland

Author:

Dobrzycki ArkadiuszORCID,Kurz DariuszORCID,Mikulski Stanisław,Wodnicki Grzegorz

Abstract

Based on a method to reduce energy consumption suggested in a real energy audit carried out in an industrial plant located in Poznań (city in Poland), the potential of using photovoltaic (PV) panels as wall cladding was analyzed, in order to reduce energy (electric and thermal) consumption and financial expenditure. The authors’ concept of using building integrated photovoltaic installation (BIPV) was presented and tested. This study checked whether the presence of PV modules would also affect heat transfer through the external wall of the building on which the installation is located. The analysis consisted of determining, for two variants, the heat transfer coefficients across the partition, in order to estimate the potential thermal energy savings. The first variant concerned the existing state, i.e., heat transfer through the external wall of the building, while the second included an additional partition layer in the form of photovoltaic panels. As a result, the use of panels as wall cladding allowed the improvement of the thermal parameters of the building wall (by increasing the thermal resistance of the wall), and the reduction of gas consumption for heating. The panels also generate electricity for the factory’s own needs. Payback time, compared to calculations which do not include changes in thermal parameters, was shortened from 14 to 11 years. The main reason for this is that gas consumption is reduced due to the improved heat transfer coefficient of the wall and the reduction of the heat loss of the facility. This aspect is usually overlooked when considering photovoltaic installations and, as argued by this paper, can be important.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference73 articles.

1. Smart designing: Reducing the solarization cost by energy efficient retrofits

2. An overview on different methods of Domestic Waste Management and Energy generation in India

3. Ethical challenges in reducing global greenhouse gas emission

4. Directive 2012/27 / EU of the European Parlament and of the Council of October 25, 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repeals of Directives 2004/8/EC and 2006/32/EChttps://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:315:0001:0056:pl:PDF

5. A European Green Deal Strategyhttps://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3