Energy, Environmental and Economic Performance of an Urban Community Hybrid Distributed Energy System

Author:

Fichera Alberto,Marrasso ElisaORCID,Sasso MaurizioORCID,Volpe RosariaORCID

Abstract

Energy systems face great challenges from both the supply and demand sides. Strong efforts have been devoted to investigate technological solutions aiming at overcoming the problems of fossil fuel depletion and the environmental issues due to the carbon emissions. Hybrid (activated by both renewables and fossil fuels) distributed energy systems can be considered a very effective and promising technology to replace traditional centralized energy systems. As a most peculiar characteristic, they reduce the use of fossil sources and transmission and distribution losses along the main power grid and contribute to electric peak shaving and partial-loads losses reduction. As a direct consequence, the transition from centralized towards hybrid decentralized energy systems leads to a new role for citizens, shifting from a passive energy consumer to active prosumers able to produce energy and distribute energy. Such a complex system needs to be carefully modelled to account for the energy interactions with prosumers, local microgrids and main grids. Thus, the aim of this paper is to investigate the performance of a hybrid distributed energy system serving an urban community and modelled within the framework of agent-based theory. The model is of general validity and estimates (i) the layout of the links along which electricity is distributed among agents in the local microgrid, (ii) electricity exchanged among agents and (iii) electricity exported to the main power grid or imported from it. A scenario analysis has been conducted at varying the distance of connection among prosumers, the installed capacity in the area and the usage of links. The distributed energy system has been compared to a centralized energy system in which the electricity requests of the urban community are satisfied by taking electricity from the main grid. The comparison analysis is carried out from an energy, environmental and economic point of view by evaluating the primary energy saving, avoided carbon dioxide emissions and the simple payback period indices.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3