Measurements and Simulation Study of Daylight Availability and Its Impact on the Heating, Cooling and Lighting Energy Demand in an Educational Building

Author:

Rucińska JoannaORCID,Trząski Adrian

Abstract

This paper deals with the impact of the use of daylight on the overall energy demand for heating, cooling, and lighting in educational buildings. The energy performance of buildings is currently of the utmost importance as current European regulations, starting from 31st December 2020 impose that all new buildings must meet nearly zero-energy building requirements. This paper presents a study of the illuminance distribution in an educational room obtained from measurements and simulation results using two different models. One of the models, integrated with a thermal simulation software, was used to estimate the impact of daylight on the energy demand. The analysis included the use of various window types, lighting control system, reference point location, and daylight calculation model for a sample room in an educational building. Results of the analysis indicate that, due to the high share of lighting demand (reaching up to 78% of the primary energy balance), there is a need to take into account the efficiency of lighting systems during the design process to correctly determine the actual energy balance of a building, increase the quality of the design of lighting systems, as well as to select the optimal parameters of windows.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference47 articles.

1. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings;Council;Off. J. Eur. Union,2010

2. Review of energy efficiency initiatives and regulations for residential buildings in India

3. Towards nearly zero-energy buildings: The state-of-art of national regulations in Europe

4. The European Window Energy Labelling Challenge. ECEEE Summer Studyhttps://www.eceee.org/static/media/uploads/site-2/library/conference_proceedings/eceee_Summer_Studies/2007/Panel_6/6.342/paper.pdf

5. A Perspective of Energy Codes and Regulations for the Buildings of the Future

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3