ACME: A Classification Model for Explaining the Risk of Preeclampsia Based on Bayesian Network Classifiers and a Non-Redundant Feature Selection Approach

Author:

Parrales-Bravo Franklin1ORCID,Caicedo-Quiroz Rosangela2ORCID,Rodríguez-Larraburu Elianne3ORCID,Barzola-Monteses Julio14ORCID

Affiliation:

1. Grupo de Investigación en Inteligencia Artificial, Facultad de Ciencias Matemáticas y Físicas, Universidad de Guayaquil, Guayaquil 090514, Ecuador

2. Centro de Estudios para el Cuidado Integral y la Promoción de la Salud, Universidad Bolivariana del Ecuador, Km 5 ½ vía Durán—Yaguachi, Durán 092405, Ecuador

3. Facultad de Salud y Servicios Sociales, Instituto Superior Universitario Bolivariano de Tecnología, Guayaquil 090313, Ecuador

4. Centro de Estudios en Tecnologías Aplicadas, Universidad Bolivariana del Ecuador, Km 5 ½ vía Durán—Yaguachi, Durán 092405, Ecuador

Abstract

While preeclampsia is the leading cause of maternal death in Guayas province (Ecuador), its causes have not yet been studied in depth. The objective of this research is to build a Bayesian network classifier to diagnose cases of preeclampsia while facilitating the understanding of the causes that generate this disease. Data for the years 2017 through 2023 were gathered retrospectively from medical histories of patients treated at “IESS Los Ceibos” hospital in Guayaquil, Ecuador. Naïve Bayes (NB), The Chow–Liu Tree-Augmented Naïve Bayes (TANcl), and Semi Naïve Bayes (FSSJ) algorithms have been considered for building explainable classification models. A proposed Non-Redundant Feature Selection approach (NoReFS) is proposed to perform the feature selection task. The model trained with the TANcl and NoReFS was the best of them, with an accuracy close to 90%. According to the best model, patients whose age is above 35 years, have a severe vaginal infection, live in a rural area, use tobacco, have a family history of diabetes, and have had a personal history of hypertension are those with a high risk of developing preeclampsia.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DEAR: DEtecting Ambiguous Requirements as a Way to Develop Skills in Requirement Specifications;Electronics;2024-08-03

2. Prediction of Emergency Room Arrivals of Patients with Preeclampsia Disease Using Artificial Neural Network Model;2024 IEEE 4th International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB);2024-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3