Optimization of Obstructive Sleep Apnea Management: Novel Decision Support via Unsupervised Machine Learning

Author:

de Araújo Costa Arthur Pinheiro1ORCID,Terra Adilson Vilarinho2,de Souza Rocha Junior Claudio2,de Araújo Costa Igor Pinheiro2ORCID,Moreira Miguel Ângelo Lellis2,dos Santos Marcos1ORCID,Gomes Carlos Francisco Simões2,da Silva Antonio Sergio2ORCID

Affiliation:

1. Systems and Computing, Military Institute of Engineering (IME), Rio de Janeiro 22290-270, RJ, Brazil

2. Operational Research, Fluminense Federal University (UFF), Niterói 24210-346, RJ, Brazil

Abstract

This study addresses Obstructive Sleep Apnea (OSA), which impacts around 936 million adults globally. The research introduces a novel decision support method named Communalities on Ranking and Objective Weights Method (CROWM), which employs principal component analysis (PCA), unsupervised Machine Learning technique, and Multicriteria Decision Analysis (MCDA) to calculate performance criteria weights of Continuous Positive Airway Pressure (CPAP—key in managing OSA) and to evaluate these devices. Uniquely, the CROWM incorporates non-beneficial criteria in PCA and employs communalities to accurately represent the performance evaluation of alternatives within each resulting principal factor, allowing for a more accurate and robust analysis of alternatives and variables. This article aims to employ CROWM to evaluate CPAP for effectiveness in combating OSA, considering six performance criteria: resources, warranty, noise, weight, cost, and maintenance. Validated by established tests and sensitivity analysis against traditional methods, CROWM proves its consistency, efficiency, and superiority in decision-making support. This method is poised to influence assertive decision-making significantly, aiding healthcare professionals, researchers, and patients in selecting optimal CPAP solutions, thereby advancing patient care in an interdisciplinary research context.

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3