“Saving Precious Seconds”—A Novel Approach to Implementing a Low-Cost Earthquake Early Warning System with Node-Level Detection and Alert Generation

Author:

Prasanna Raj,Chandrakumar Chanthujan,Nandana RasikaORCID,Holden CarolineORCID,Punchihewa Amal,Becker Julia S.ORCID,Jeong SeokhoORCID,Liyanage Nandika,Ravishan Danuka,Sampath Rangana,Tan Marion LaraORCID

Abstract

This paper presents findings from ongoing research that explores the ability to use Micro-Electromechanical Systems (MEMS)-based technologies and various digital communication protocols for earthquake early warning (EEW). The paper proposes a step-by-step guide to developing a unique EEW network architecture driven by a Software-Defined Wide Area Network (SD-WAN)-based hole-punching technology consisting of MEMS-based, low-cost accelerometers hosted by the general public. In contrast with most centralised cloud-based approaches, a node-level decentralised data-processing is used to generate warnings with the support of a modified Propagation of Local Undamped Motion (PLUM)-based EEW algorithm. With several hypothetical earthquake scenarios, experiments were conducted to evaluate the system latencies of the proposed decentralised EEW architecture and its performance was compared with traditional centralised EEW architecture. The results from sixty simulations show that the SD-WAN-based hole-punching architecture supported by the Transmission Control Protocol (TCP) creates the optimum alerting conditions. Furthermore, the results provide clear evidence to show that the decentralised EEW system architecture can outperform the centralised EEW architecture and can save valuable seconds when generating EEW, leading to a longer warning time for the end-user. This paper contributes to the EEW literature by proposing a novel EEW network architecture.

Funder

Earthquake Commission

Massey University

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction,Communication

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3