Enhancing Small Medical Dataset Classification Performance Using GAN

Author:

Alauthman Mohammad1ORCID,Al-qerem Ahmad2ORCID,Sowan Bilal3ORCID,Alsarhan Ayoub4ORCID,Eshtay Mohammed5,Aldweesh Amjad6ORCID,Aslam Nauman7ORCID

Affiliation:

1. Department of Information Security, Faculty of Information Technology, University of Petra, Amman 11196, Jordan

2. Computer Science Department, Faculty of Information Technology, Zarqa University, Zarqa 13110, Jordan

3. Department of Business Intelligence and Data Analytics, University of Petra, Amman 11196, Jordan

4. Department of Information Technology, Faculty of Prince Al-Hussein Bin Abdallah II for Information Technology, The Hashemite University, Zarqa 13133, Jordan

5. Abdul Aziz Al Ghurair School of Advanced Computing (ASAC), Luminus Technical University, Amman 11118, Jordan

6. College of Computing and Information Technology, Shaqra University, Riyadh 11911, Saudi Arabia

7. Department of Computer Science and Digital Technologies, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK

Abstract

Developing an effective classification model in the medical field is challenging due to limited datasets. To address this issue, this study proposes using a generative adversarial network (GAN) as a data-augmentation technique. The research aims to enhance the classifier’s generalization performance, stability, and precision through the generation of synthetic data that closely resemble real data. We employed feature selection and applied five classification algorithms to thirteen benchmark medical datasets, augmented using the least-square GAN (LS-GAN). Evaluation of the generated samples using different ratios of augmented data showed that the support vector machine model outperforms other methods with larger samples. The proposed data augmentation approach using a GAN presents a promising solution for enhancing the performance of classification models in the healthcare field.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction,Communication

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3