Author:
Ahamed Kabeer Noor,Gan Keng,Haris Erum
Abstract
Online reviews are an important source of opinion to measure products’ quality. Hence, automated opinion mining is used to extract important features (aspect) and related comments (sentiment). Extraction of correct aspect-sentiment pairs is critical for overall outcome of opinion mining; however, current works still have limitations in terms of identifying special compound noun and parent-child relationship aspects in the extraction process. To address these problems, an aspect-sentiment pair extraction using the rules and compound noun lexicon (ASPERC) model is proposed. The model consists of three main phases, such as compound noun lexicon generation, aspect-sentiment pair rule generation, and aspect-sentiment pair extraction. The combined approach of rules generated from training sentences and domain specific compound noun lexicon enable extraction of more aspects by firstly identifying special compound noun and parent-child aspects, which eventually contribute to more aspect-sentiment pair extraction. The experiment is conducted with the SemEval 2014 dataset to compare proposed and baseline models. Both ASPERC and its variant, ASPER, result higher in recall (28.58% and 22.55% each) compared to baseline and satisfactorily extract more aspect sentiment pairs. Lastly, the reasonable outcome of ASPER indicates applicability of rules to various domains.
Funder
Universiti Sains Malaysia
Subject
Computer Networks and Communications,Human-Computer Interaction,Communication
Reference27 articles.
1. Sentiment analysis and opinion mining;Liu,2012
2. Extracting product features and opinions from reviews;Popescu,2007
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献