Deep Full-Body HPE for Activity Recognition from RGB Frames Only

Author:

Neili Boualia SamehORCID,Essoukri Ben Amara Najoua

Abstract

Human Pose Estimation (HPE) is defined as the problem of human joints’ localization (also known as keypoints: elbows, wrists, etc.) in images or videos. It is also defined as the search for a specific pose in space of all articulated joints. HPE has recently received significant attention from the scientific community. The main reason behind this trend is that pose estimation is considered as a key step for many computer vision tasks. Although many approaches have reported promising results, this domain remains largely unsolved due to several challenges such as occlusions, small and barely visible joints, and variations in clothing and lighting. In the last few years, the power of deep neural networks has been demonstrated in a wide variety of computer vision problems and especially the HPE task. In this context, we present in this paper a Deep Full-Body-HPE (DFB-HPE) approach from RGB images only. Based on ConvNets, fifteen human joint positions are predicted and can be further exploited for a large range of applications such as gesture recognition, sports performance analysis, or human-robot interaction. To evaluate the proposed deep pose estimation model, we apply it to recognize the daily activities of a person in an unconstrained environment. Therefore, the extracted features, represented by deep estimated poses, are fed to an SVM classifier. To validate the proposed architecture, our approach is tested on two publicly available benchmarks for pose estimation and activity recognition, namely the J-HMDBand CAD-60datasets. The obtained results demonstrate the efficiency of the proposed method based on ConvNets and SVM and prove how deep pose estimation can improve the recognition accuracy. By means of comparison with state-of-the-art methods, we achieve the best HPE performance, as well as the best activity recognition precision on the CAD-60 dataset.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction,Communication

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3