Post-Editing Neural MT in Medical LSP: Lexico-Grammatical Patterns and Distortion in the Communication of Specialized Knowledge

Author:

Martikainen HannaORCID

Abstract

The recent arrival on the market of high-performing neural MT engines will likely lead to a profound transformation of the translation profession. The purpose of this study is to explore how this paradigm change impacts the post-editing process, with a focus on lexico-grammatical patterns that are used in the communication of specialized knowledge. A corpus of 109 medical abstracts pre-translated from English into French by the neural MT engine DeepL and post-edited by master’s students in translation was used to study potential distortions in the translation of lexico-grammatical patterns. The results suggest that neural MT leads to specific sources of distortion in the translation of these patterns, not unlike what has previously been observed in human translation. These observations highlight the need to pay particular attention to lexico-grammatical patterns when post-editing neural MT in order to achieve functional equivalence in the translation of specialized texts.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction,Communication

Reference23 articles.

1. Is Neural Machine Translation the New State of the Art?

2. The impact of Google Neural Machine Translation on Post-editing by student translators;Yamada;J. Spec. Transl.,2019

3. A product and process analysis of post-editor corrections on neural, statistical and rule-based machine translation output

4. Machine translation and post-editing training as part of a master’s programme;Guerberof Arenas;J. Spec. Transl.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3