Abstract
Uncertainty is a standard condition under which large parts of art-historical and curatorial knowledge creation and communication are operating. In contrast to standard levels of data quality in non-historical research domains, historical object and knowledge collections contain substantial amounts of uncertain, ambiguous, contested, or plainly missing data. Visualization approaches and interfaces to cultural collections have started to represent data quality and uncertainty metrics, yet all existing work is limited to representations for isolated metadata dimensions only. With this article, we advocate for a more systematic, synoptic and self-conscious approach to uncertainty visualization for cultural collections. We introduce omnipresent types of data uncertainty and discuss reasons for their frequent omission by interfaces for galleries, libraries, archives and museums. On this basis we argue for a coordinated counter strategy for uncertainty visualization in this field, which will also raise the efforts going into complex interface design and conceptualization. Building on the PolyCube framework for collection visualization, we showcase how multiple uncertainty representation techniques can be assessed and coordinated in a multi-perspective environment. As for an outlook, we reflect on both the strengths and limitations of making the actual wealth of data quality questions transparent with regard to different target and user groups.
Subject
Computer Networks and Communications,Human-Computer Interaction,Communication
Reference56 articles.
1. Debates in the Digital Humanities,2012
2. Debates in the Digital Humanities 2019,2019
3. Is There a “Digital” Art History?
4. Computational Literary Studies: A Critical Inquiry Online Forum
https://critinq.wordpress.com/2019/03/31/computational-literary-studies-a-critical-inquiry-online-forum/
5. The Datafied Society: Studying Culture through Data;Schäfer,2017
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献