Limits of Compartmental Models and New Opportunities for Machine Learning: A Case Study to Forecast the Second Wave of COVID-19 Hospitalizations in Lombardy, Italy

Author:

Gatto AndreaORCID,Accarino GabrieleORCID,Aloisi ValeriaORCID,Immorlano FrancescoORCID,Donato Francesco,Aloisio GiovanniORCID

Abstract

Compartmental models have long been used in epidemiological studies for predicting disease spread. However, a major issue when using compartmental mathematical models concerns the time-invariant formulation of hyper-parameters that prevent the model from following the evolution over time of the epidemiological phenomenon under investigation. In order to cope with this problem, the present work suggests an alternative hybrid approach based on Machine Learning that avoids recalculation of hyper-parameters and only uses an initial set. This study shows that the proposed hybrid approach makes it possible to correct the expected loss of accuracy observed in the compartmental model when the considered time horizon increases. As a case study, a basic compartmental model has been designed and tested to forecast COVID-19 hospitalizations during the first and the second pandemic waves in Lombardy, Italy. The model is based on an extended formulation of the contact function that allows modelling of the trend of personal contacts throughout the reference period. Moreover, the scenario analysis proposed in this work can help policy-makers select the most appropriate containment measures to reduce hospitalizations and relieve pressure on the health system, but also to limit any negative impact on the economic and social systems.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction,Communication

Reference47 articles.

1. A Novel Coronavirus from Patients with Pneumonia in China, 2019

2. Coronavirus Disease (COVID-2019) Situation Reportshttps://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports

3. Naming the Coronavirus Disease (COVID-19) and the Virus That Causes Ithttps://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it

4. Clinical Characteristics of Coronavirus Disease 2019 in China

5. The COVID-19 infection: lessons from the Italian experience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3