AgroAId: A Mobile App System for Visual Classification of Plant Species and Diseases Using Deep Learning and TensorFlow Lite

Author:

Reda Mariam,Suwwan Rawan,Alkafri Seba,Rashed Yara,Shanableh Tamer

Abstract

This paper aims to assist novice gardeners in identifying plant diseases to circumvent misdiagnosing their plants and to increase general horticultural knowledge for better plant growth. In this paper, we develop a mobile plant care support system (“AgroAId”), which incorporates computer vision technology to classify a plant’s [species–disease] combination from an input plant leaf image, recognizing 39 [species-and-disease] classes. Our method comprises a comparative analysis to maximize our multi-label classification model’s performance and determine the effects of varying the convolutional neural network (CNN) architectures, transfer learning approach, and hyperparameter optimizations. We tested four lightweight, mobile-optimized CNNs—MobileNet, MobileNetV2, NasNetMobile, and EfficientNetB0—and tested four transfer learning scenarios (percentage of frozen-vs.-retrained base layers): (1) freezing all convolutional layers; (2) freezing 80% of layers; (3) freezing 50% only; and (4) retraining all layers. A total of 32 model variations are built and assessed using standard metrics (accuracy, F1-score, confusion matrices). The most lightweight, high-accuracy model is concluded to be an EfficientNetB0 model using a fully retrained base network with optimized hyperparameters, achieving 99% accuracy and demonstrating the efficacy of the proposed approach; it is integrated into our plant care support system in a TensorFlow Lite format alongside the front-end mobile application and centralized cloud database. Finally, our system also uses the collective user classification data to generate spatiotemporal analytics about regional and seasonal disease trends, making these analytics accessible to all system users to increase awareness of global agricultural trends.

Funder

American University of Sharjah

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction,Communication

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Lightweight Low-Power Model for the Detection of Plant Leaf Diseases;SN Computer Science;2024-03-15

2. Investigating Visual Analytics against Terrorist Financing in Dark Web Marketplaces;2023 IEEE International Conference on Big Data (BigData);2023-12-15

3. Innovative Approaches to Java Plum Leaf Disease Identification: Federated Learning meets Convolutional Neural Networks;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

4. Advanced Method of MOB-I App Used for Medical and Agriculture;Advances in Web Technologies and Engineering;2023-06-30

5. Tomato leaf disease detection using series of Convolutional and Depthwise Convolutional Layers;2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT);2023-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3