Validation of the Burden Distribution of the 1/3-Scale of a Blast Furnace Simulated by the Discrete Element Method

Author:

Mio HiroshiORCID,Narita Yoichi,Nakano Kaoru,Nomura Seiji

Abstract

The objective of this paper was to develop a prediction tool for the burden distribution in a charging process of a bell-less-type blast furnace using the discrete element method (DEM). The particle behavior on the rotating chute and on the burden surface was modeled, and the burden distribution was analyzed. Furthermore, the measurements of the burden distribution in a 1/3-scale experimental blast furnace were performed to validate the simulated results. Particle size segregation occurred during conveying to the experimental blast furnace. The smaller particles were initially discharged followed by the larger ones later. This result was used as an input in the simulation. The burden profile simulated using DEM was similar to the experimental one. The terrace was found at the burden surface subsequent to ore-charging, and its simulated position simulated agreed with that of the experimental result. The surface angle of the ore layer was mostly similar. The simulated ore to coke mass ratio (O/C) distribution in the radial direction and the mean particle diameter distribution correlated with the experimental results very well. It can be concluded that this method of particle simulation of the bell-less charging process is highly reliable in the prediction of the burden distribution in a blast furnace.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3