Coupling Effects of Strain Rate and Low Temperature on the Dynamic Mechanical Properties of Frozen Water-Saturated Sandstone

Author:

Yan Zhiqiang,Li Zeng,Tan Yizhong,Ma Linjian,Yu Liyuan,Li Hongya

Abstract

The mechanical properties of water-rich rocks in a subzero temperature environment are quite different from those at room temperature, which introduces many unexpected engineering hazards. The dynamic compressive behaviors of frozen water-saturated sandstone are related to strain rate and temperature at different degrees. In this paper, quasi-static and dynamic tests were conducted on the saturated sandstone utilizing the MTS-816 apparatus and the modified split Hopkinson pressure bar (SHPB) device with a freezing module, which are constrained at a temperature range of −1 °C~−20 °C and a strain rate range of 10−5 s−1~200 s−1. The coupling effect of strain rate and temperature on the mechanical characteristics of saturated sandstone is systematically investigated. It is found that the quasi-static compressive strength of frozen saturated sandstone increases with the applied temperature from −1 °C to −5 °C and decreases with that from −5 °C to −20 °C, while the dynamic compressive strength exhibits an opposite trend. Different from the primary shear failure under quasi-static tests, the failure pattern of the frozen specimens becomes tensile failure under dynamic tests with an evident sensitivity to the applied temperature. Furthermore, the dissipated energy can be positively correlated with strain rate, while the growth rate of dissipated energy decreases with the applied temperature from −1 °C to −5 °C and increases with that from −5 °C to −20 °C. A new water-ice phase transition mechanism was further introduced, which divided the freezing process of water-saturated rock into the intensive stage and the stable water-ice phase transition stage. The underlying mechanism of water-ice phase transition governing the dynamic mechanical behavior of frozen saturated sandstone was also revealed.

Funder

Jiangsu Province Natural Science Foundation

Chinese National Natural Science Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3