Review on Development of High-Static–Low-Dynamic-Stiffness Seat Cushion Mattress for Vibration Control of Seating Suspension System

Author:

Guo Linchuan,Wang XuORCID,Fan Rang-LinORCID,Bi Fengrong

Abstract

This review focuses on studying passive vibration isolation techniques and their applications. Advantages and disadvantages of different vibration isolation techniques will be compared in order to find an innovative method to reduce seating suspension system vibration and improve the ride comfort of vehicles’ drivers. Quasi-zero stiffness (QZS) isolators of high-static–low-dynamic stiffness are found to have good application prospects in low-frequency vibration isolation. In order to improve the isolation performance of the seating suspension system, a specially made seat cushion will be studied where a quasi-zero stiffness (QZS) isolator such as a double-diamond isolator is selected as one of the cells/units/elements of the seat cushion mattress. The double-diamond isolator structure does not represent the whole seating suspension system. The transmissibility ratio of the double-diamond isolator is evaluated by analytical and simulation models and compared to that of a conventional linear spring isolator. Although the performance of the passive vibration isolation/control system is usually worse than that of the active or semi-active control system, the cost of the passive vibration isolation/control system is lower than that of the active and semi-active control system, and the relative simplicity of adding a vibration isolation cushion mattress in an existing passive seating suspension system makes it low in cost, easy to implement, and more attractive than the active and semi-active vibration control systems.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3