An Enhanced Multimodal Stacking Scheme for Online Pornographic Content Detection

Author:

Song Kwangho,Kim Yoo-Sung

Abstract

An enhanced multimodal stacking scheme is proposed for quick and accurate online detection of harmful pornographic contents on the Internet. To accurately detect harmful contents, the implicative visual features (auditory features) are extracted using a bi-directional RNN (recurrent neural network) with VGG-16 (a multilayered dilated convolutional network) to implicitly express the signal change patterns over time within each input. Using only the implicative visual and auditory features, a video classifier and an audio classifier are trained, respectively. By using both features together, one fusion classifier is also trained. Then, these three component classifiers are stacked in the enhanced ensemble scheme to reduce the false negative errors in a serial order of the fusion classifier, video classifier, and audio classifier for a quick online detection. The proposed multimodal stacking scheme yields an improved true positive rate of 95.40% and a false negative rate of 4.60%, which are superior values to previous studies. In addition, the proposed stacking scheme can accurately detect harmful contents up to 74.58% and an average rate of 62.16% faster than the previous stacking scheme. Therefore, the proposed enhanced multimodal stacking scheme can be used to quickly and accurately filter out harmful contents in the online environments.

Funder

Inha University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. Applying deep learning to classify pornographic images and videos;Moustaf;arXiv,2015

2. Pornography classification: The hidden clues in video space–time

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning Strategies for Sensitive Content Detection;Electronics;2023-06-01

2. ASYv3: Attention‐enabled pooling embedded Swin transformer‐based YOLOv3 for obscenity detection;Expert Systems;2023-05-16

3. Obscene image detection using transfer learning and feature fusion;Multimedia Tools and Applications;2023-02-21

4. Leveraging Large-scale Multimedia Datasets to Refine Content Moderation Models;2022 IEEE Eighth International Conference on Multimedia Big Data (BigMM);2022-12

5. Detecting and ranking pornographic content in videos;Forensic Science International: Digital Investigation;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3