Abstract
Drowsy driving is one of the main causes of traffic accidents. To reduce such accidents, early detection of drowsy driving is needed. In previous studies, it was shown that driver drowsiness affected driving performance, behavioral indices, and physiological indices. The purpose of this study is to investigate the feasibility of classification of the alert states of drivers, particularly the slightly drowsy state, based on hybrid sensing of vehicle-based, behavioral, and physiological indicators with consideration for the implementation of these identifications into a detection system. First, we measured the drowsiness level, driving performance, physiological signals (from electroencephalogram and electrocardiogram results), and behavioral indices of a driver using a driving simulator and driver monitoring system. Next, driver alert and drowsy states were identified by machine learning algorithms, and a dataset was constructed from the extracted indices over a period of 10 s. Finally, ensemble algorithms were used for classification. The results showed that the ensemble algorithm can obtain 82.4% classification accuracy using hybrid methods to identify the alert and slightly drowsy states, and 95.4% accuracy classifying the alert and moderately drowsy states. Additionally, the results show that the random forest algorithm can obtain 78.7% accuracy when classifying the alert vs. slightly drowsy states if physiological indicators are excluded and can obtain 89.8% accuracy when classifying the alert vs. moderately drowsy states. These results represent the feasibility of highly accurate early detection of driver drowsiness and the feasibility of implementing a driver drowsiness detection system based on hybrid sensing using non-contact sensors.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference36 articles.
1. The occurrence Situation of Traffic Accidents during the Year of 2017https://www.npa.go.jp/publications/statistics/koutsuu/H29zennjiko.pdf
2. Prediction of automobile driver sleepiness;Kitajima;Trans. Jpn. Soc. Mech. Eng. C,1997
3. Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients
4. Real-Time Nonintrusive Monitoring and Prediction of Driver Fatigue
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献