License Plate Image Generation using Generative Adversarial Networks for End-To-End License Plate Character Recognition from a Small Set of Real Images

Author:

Han Byung-Gil,Lee Jong TaekORCID,Lim Kil-Taek,Choi Doo-HyunORCID

Abstract

License Plate Character Recognition (LPCR) is a technology for reading vehicle registration plates using optical character recognition from images and videos, and it has a long history due to its usefulness. While LPCR has been significantly improved with the advance of deep learning, training deep networks for LPCR module requires a large number of license plate (LP) images and their annotations. Unlike other public datasets of vehicle information, each LP has a unique combination of characters and numbers depending on the country or the region. Therefore, collecting a sufficient number of LP images is extremely difficult for normal research. In this paper, we propose LP-GAN, an LP image generation method, by applying an ensemble of generative adversarial networks (GAN), and we also propose a modified lightweight YOLOv2 model for an efficient end-to-end LPCR module. With only 159 real LP images available online, thousands of synthetic LP images were generated by using LP-GAN. The generated images not only looked similar to real ones, but they were also shown to be effective for training the LPCR module. As a result of performance tests with 22,117 real LP images, the LPCR module trained with only the generated synthetic dataset achieved 98.72% overall accuracy, which is comparable to that of training with a real LP image dataset. In addition, we improved the processing speed of LPCR about 1.7 times faster than that of the original YOLOv2 model by using the proposed lightweight model.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3