Author:
Zhang Kai,Luo Shoushan,Xin Yang,Zhu Hongliang,Chen Yuling
Abstract
The intrusion detection system (IDS) which is used widely in enterprises, has produced a large number of logs named alerts, from which the intrusion patterns can be mined. These patterns can be used to construct the intrusion scenarios or discover the final objectives of the malicious actors, and even assist the forensic works of network crimes. In this paper, a novel algorithm for the intrusion pattern mining is proposed which aimsto solve the difficult problems of the intrusion action sequence such as the loss of important intrusion actions, the disorder of the action sequence and the random noise actions. These common problems often occur in the real production environment which cause serious performance decrease in the analyzing system. The proposed algorithm is based on the online analysis of the intrusion action sequences extracted from IDS alerts, through calculating the influences of a particular action on the subsequent actions, the real intrusion patterns are discovered. The experimental results show that the method is effective in discovering pattern from the complex intrusion action sequences.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献