Biostimulation in Desert Soils for Microbial-Induced Calcite Precipitation

Author:

Raveh-Amit Hadas,Tsesarsky MichaelORCID

Abstract

Microbial-induced calcite precipitation (MICP) is a soil amelioration technique aiming to mitigate different environmental and engineering concerns, including desertification, soil erosion, and soil liquefaction, among others. The hydrolysis of urea, catalyzed by the microbial enzyme urease, is considered the most efficient microbial pathway for MICP. Biostimulated MICP relies on the enhancement of indigenous urea-hydrolyzing bacteria by providing an appropriate enrichment and precipitation medium, as opposed to bioaugmentation, which requires introducing large volumes of exogenous bacterial cultures into the treated soil along with a growth and precipitation medium. Biostimulated MICP in desert soils is challenging as the total carbon content and the bacterial abundance are considerably low. In this study, we examined the biostimulation potential in soils from the Negev Desert, Israel, for the purpose of mitigation of topsoil erosion in arid environments. Incubating soil samples in urea and enrichment media demonstrated effective urea hydrolysis leading to pH increase, which is necessary for calcite precipitation. Biostimulation rates were found to increase with concentrations of energy (carbon) source in the stimulation media, reaching its maximal levels within 3 to 6 days. Following stimulation, calcium carbonate precipitation was induced by spiking stimulated bacteria in precipitation (CaCl2 enriched) media. The results of our research demonstrate that biostimulated MICP is feasible in the low-carbon, mineral soils of the northern Negev Desert in Israel.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3