Method for Volume of Irregular Shape Pellets Estimation Using 2D Imaging Measurement

Author:

Laucka Andrius,Andriukaitis DariusORCID,Valinevicius Algimantas,Navikas Dangirutis,Zilys Mindaugas,Markevicius Vytautas,Klimenta Dardan,Sotner RomanORCID,Jerabek JanORCID

Abstract

Growing population and decreasing amount of cultivated land conditions the increase of fertilizer demand. With the advancements of computerized equipment, more complex methods can be used for solving complex mathematical problems. In the fertilizer industry, the granulometric composition of products matters as much as the quality of production of chemical composition products. The shape and size of pellets determines their distribution over cultivated land areas. The effective distance of field spreading is directly related to the size and shape parameters of a pellet. Therefore, the monitoring of production in production lines is essential. The standard direct methods of the monitoring and control of granulometric composition requires too much time and human resources. These factors can be eliminated by using imaging measuring methods that have a variety of benefits, but require additional research in order to assure and determine the compliance of real-time results with results of the control equipment. One of the fastest, most flexible and largest amount of data providing methods is the processing and analysis of digital images. However, then we face the issue of the suitability of 2D images to be used for the evaluation of granulometric compositions, where processing of digital images provides only two dimensions of a pellet: length and width. This study proposes a method of evaluating an irregular pellet. After experimental research we determined < 2% of discrepancy when compared to the real volume of a pellet.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. Determination of Particle Size Distributions by Laser Diffraction;Markovic;Tech. New Mater.,2012

2. In-line particle sizing for process control in new dimensions

3. Particle Size Analyzer

4. On-line measurement of particle size in mineral slurries

5. Ultrasonic Measurements in Particle Size Analysis;McClements,2006

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3